Combinations (n choose r) Reference Values
Calculate the number of combinations using nCr for integers with 0 ≤ r ≤ n ≤ 18.
Table of Contents
Reference Value Index
This page lists 84 reference values for quick browsing and lookup.
All Reference Values
- 3 n n; 0 r r = 1 Combination Count
- 3 n n; 1 r r = 3 Combination Count
- 3 n n; 2 r r = 3 Combination Count
- 3 n n; 3 r r = 1 Combination Count
- 4 n n; 0 r r = 1 Combination Count
- 4 n n; 1 r r = 4 Combination Count
- 4 n n; 2 r r = 6 Combination Count
- 4 n n; 3 r r = 4 Combination Count
- 4 n n; 4 r r = 1 Combination Count
- 5 n n; 0 r r = 1 Combination Count
- 5 n n; 1 r r = 5 Combination Count
- 5 n n; 2 r r = 10 Combination Count
- 5 n n; 3 r r = 10 Combination Count
- 5 n n; 4 r r = 5 Combination Count
- 5 n n; 5 r r = 1 Combination Count
- 6 n n; 0 r r = 1 Combination Count
- 6 n n; 1 r r = 6 Combination Count
- 6 n n; 2 r r = 15 Combination Count
- 6 n n; 3 r r = 20 Combination Count
- 6 n n; 4 r r = 15 Combination Count
- 6 n n; 5 r r = 6 Combination Count
- 6 n n; 6 r r = 1 Combination Count
- 7 n n; 0 r r = 1 Combination Count
- 7 n n; 1 r r = 7 Combination Count
- 7 n n; 2 r r = 21 Combination Count
- 7 n n; 3 r r = 35 Combination Count
- 7 n n; 4 r r = 35 Combination Count
- 7 n n; 5 r r = 21 Combination Count
- 7 n n; 6 r r = 7 Combination Count
- 7 n n; 7 r r = 1 Combination Count
- 8 n n; 0 r r = 1 Combination Count
- 8 n n; 1 r r = 8 Combination Count
- 8 n n; 2 r r = 28 Combination Count
- 8 n n; 3 r r = 56 Combination Count
- 8 n n; 4 r r = 70 Combination Count
- 8 n n; 5 r r = 56 Combination Count
- 8 n n; 6 r r = 28 Combination Count
- 8 n n; 7 r r = 8 Combination Count
- 8 n n; 8 r r = 1 Combination Count
- 9 n n; 0 r r = 1 Combination Count
- 9 n n; 1 r r = 9 Combination Count
- 9 n n; 2 r r = 36 Combination Count
- 9 n n; 3 r r = 84 Combination Count
- 9 n n; 4 r r = 126 Combination Count
- 9 n n; 5 r r = 126 Combination Count
- 9 n n; 6 r r = 84 Combination Count
- 9 n n; 8 r r = 9 Combination Count
- 9 n n; 9 r r = 1 Combination Count
- 10 n n; 0 r r = 1 Combination Count
- 10 n n; 1 r r = 10 Combination Count
- 10 n n; 2 r r = 45 Combination Count
- 10 n n; 3 r r = 120 Combination Count
- 10 n n; 4 r r = 210 Combination Count
- 10 n n; 5 r r = 252 Combination Count
- 10 n n; 6 r r = 210 Combination Count
- 10 n n; 9 r r = 10 Combination Count
- 10 n n; 10 r r = 1 Combination Count
- 12 n n; 0 r r = 1 Combination Count
- 12 n n; 1 r r = 12 Combination Count
- 12 n n; 2 r r = 66 Combination Count
- 12 n n; 3 r r = 220 Combination Count
- 12 n n; 4 r r = 495 Combination Count
- 12 n n; 5 r r = 792 Combination Count
- 12 n n; 6 r r = 924 Combination Count
- 12 n n; 11 r r = 12 Combination Count
- 12 n n; 12 r r = 1 Combination Count
- 15 n n; 0 r r = 1 Combination Count
- 15 n n; 1 r r = 15 Combination Count
- 15 n n; 2 r r = 105 Combination Count
- 15 n n; 3 r r = 455 Combination Count
- 15 n n; 4 r r = 1,365 Combination Count
- 15 n n; 5 r r = 3,003 Combination Count
- 15 n n; 6 r r = 5,005 Combination Count
- 15 n n; 14 r r = 15 Combination Count
- 15 n n; 15 r r = 1 Combination Count
- 18 n n; 0 r r = 1 Combination Count
- 18 n n; 1 r r = 18 Combination Count
- 18 n n; 2 r r = 153 Combination Count
- 18 n n; 3 r r = 816 Combination Count
- 18 n n; 4 r r = 3,060 Combination Count
- 18 n n; 5 r r = 8,568 Combination Count
- 18 n n; 6 r r = 18,564 Combination Count
- 18 n n; 17 r r = 18 Combination Count
- 18 n n; 18 r r = 1 Combination Count
Reference Table
| Scenario | nCr |
|---|---|
| 3 n n; 0 r r | 1 Combination Count |
| 3 n n; 1 r r | 3 Combination Count |
| 3 n n; 2 r r | 3 Combination Count |
| 3 n n; 3 r r | 1 Combination Count |
| 4 n n; 0 r r | 1 Combination Count |
| 4 n n; 1 r r | 4 Combination Count |
| 4 n n; 2 r r | 6 Combination Count |
| 4 n n; 3 r r | 4 Combination Count |
| 4 n n; 4 r r | 1 Combination Count |
| 5 n n; 0 r r | 1 Combination Count |
| 5 n n; 1 r r | 5 Combination Count |
| 5 n n; 2 r r | 10 Combination Count |
| 5 n n; 3 r r | 10 Combination Count |
| 5 n n; 4 r r | 5 Combination Count |
| 5 n n; 5 r r | 1 Combination Count |
| 6 n n; 0 r r | 1 Combination Count |
| 6 n n; 1 r r | 6 Combination Count |
| 6 n n; 2 r r | 15 Combination Count |
| 6 n n; 3 r r | 20 Combination Count |
| 6 n n; 4 r r | 15 Combination Count |
| 6 n n; 5 r r | 6 Combination Count |
| 6 n n; 6 r r | 1 Combination Count |
| 7 n n; 0 r r | 1 Combination Count |
| 7 n n; 1 r r | 7 Combination Count |
| 7 n n; 2 r r | 21 Combination Count |
| 7 n n; 3 r r | 35 Combination Count |
| 7 n n; 4 r r | 35 Combination Count |
| 7 n n; 5 r r | 21 Combination Count |
| 7 n n; 6 r r | 7 Combination Count |
| 7 n n; 7 r r | 1 Combination Count |
| 8 n n; 0 r r | 1 Combination Count |
| 8 n n; 1 r r | 8 Combination Count |
| 8 n n; 2 r r | 28 Combination Count |
| 8 n n; 3 r r | 56 Combination Count |
| 8 n n; 4 r r | 70 Combination Count |
| 8 n n; 5 r r | 56 Combination Count |
| 8 n n; 6 r r | 28 Combination Count |
| 8 n n; 7 r r | 8 Combination Count |
| 8 n n; 8 r r | 1 Combination Count |
| 9 n n; 0 r r | 1 Combination Count |
| 9 n n; 1 r r | 9 Combination Count |
| 9 n n; 2 r r | 36 Combination Count |
| 9 n n; 3 r r | 84 Combination Count |
| 9 n n; 4 r r | 126 Combination Count |
| 9 n n; 5 r r | 126 Combination Count |
| 9 n n; 6 r r | 84 Combination Count |
| 9 n n; 8 r r | 9 Combination Count |
| 9 n n; 9 r r | 1 Combination Count |
| 10 n n; 0 r r | 1 Combination Count |
| 10 n n; 1 r r | 10 Combination Count |
| 10 n n; 2 r r | 45 Combination Count |
| 10 n n; 3 r r | 120 Combination Count |
| 10 n n; 4 r r | 210 Combination Count |
| 10 n n; 5 r r | 252 Combination Count |
| 10 n n; 6 r r | 210 Combination Count |
| 10 n n; 9 r r | 10 Combination Count |
| 10 n n; 10 r r | 1 Combination Count |
| 12 n n; 0 r r | 1 Combination Count |
| 12 n n; 1 r r | 12 Combination Count |
| 12 n n; 2 r r | 66 Combination Count |
| 12 n n; 3 r r | 220 Combination Count |
| 12 n n; 4 r r | 495 Combination Count |
| 12 n n; 5 r r | 792 Combination Count |
| 12 n n; 6 r r | 924 Combination Count |
| 12 n n; 11 r r | 12 Combination Count |
| 12 n n; 12 r r | 1 Combination Count |
| 15 n n; 0 r r | 1 Combination Count |
| 15 n n; 1 r r | 15 Combination Count |
| 15 n n; 2 r r | 105 Combination Count |
| 15 n n; 3 r r | 455 Combination Count |
| 15 n n; 4 r r | 1,365 Combination Count |
| 15 n n; 5 r r | 3,003 Combination Count |
| 15 n n; 6 r r | 5,005 Combination Count |
| 15 n n; 14 r r | 15 Combination Count |
| 15 n n; 15 r r | 1 Combination Count |
| 18 n n; 0 r r | 1 Combination Count |
| 18 n n; 1 r r | 18 Combination Count |
| 18 n n; 2 r r | 153 Combination Count |
| 18 n n; 3 r r | 816 Combination Count |
| 18 n n; 4 r r | 3,060 Combination Count |
| 18 n n; 5 r r | 8,568 Combination Count |
| 18 n n; 6 r r | 18,564 Combination Count |
| 18 n n; 17 r r | 18 Combination Count |
| 18 n n; 18 r r | 1 Combination Count |
Frequently Asked Questions
Frequently asked questions for Combinations (n choose r) and its reference values.
What does the Combinations (n choose r) calculator do?
It helps with counting selections where order does not matter in combinatorics and probability.
What formula does the Combinations (n choose r) calculator use?
nCr = n! / (r!(n-r)!), computed iteratively for stable exact integer results in range.
What inputs are valid?
n and r must be integers with 0 ≤ r ≤ n ≤ 18.
When would I use this?
counting selections where order does not matter in combinatorics and probability
Methodology and Review
Each row on this page links to a value detail page derived from the same conversion data file as the main calculator and reference table. This reduces inconsistencies across page variants.
Editorial metadata and structured data are rendered across the converter page and linked value pages. Review policies are documented in our review process and editorial policy.